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A Class of Probabilistic Unfolding Models
for Polytomous Responses

Guanzhong Luo

Nanyang Technological University, Singapore; and Murdoch University, Australia

By revisiting the approaches used to present the Rasch model for poly-
tomous response, this paper uses the principle of the rating formulation
(Andrich, 1978) to construct a class of unfolding models for polytomous
responses in terms of a set of latent dichotomous unfolding variables. By
anchoring the dichotomous unfolding variables involved at the same location,
this paper presents a formulation of a very general class of unfolding models
for ordered polytomous responses, of which the unfolding models for ordered
polytomous responses proposed hitherto are special cases. Within this class,
the analytic and measurement properties of the probabilistic functions are
well interpreted in terms of the latitudes of acceptance parameters of the
dichotomous unfolding models. Based on the general form of this class of
unfolding models, some new models are readily specified. � 2001 Academic Press

1. INTRODUCTION

The collections of direct responses of persons to stimuli are known as single
stimulus data (Coombs, 1964). Single stimulus data can be coded in two forms:
dichotomous and polytomous. In the context of attitude measurement, the former
has only two response categories: 0, Disagree, and 1, Agree. The latter allows for
more than two ordered response categories; for example, 0, Strongly Disagree, 1,
Disagree, 2, Agree, and 3, Strongly Agree. Coombs (1950, 1964) used the term
unfolding technique to describe a procedure to construct a joint scale (J-scale) from
a set of individual scales (I-scale). Coombs and Avrunin (1977) pointed out that
single-peaked functions are the foundation underlying unfolding theory. In the
literature, the response process in which a single-peaked function is dominant is
generally termed an unfolding process. The models conforming to the unfolding
process are classified as unfolding models.

The last decade or two has seen a major interest in the development of explicit
probabilistic unfolding models for dichotomous responses (e.g., DeSarbo 6 Hoffman,
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1986; Andrich, 1988, 1989, 1996; Hoijtink, 1990, 1991; Andrich 6 Luo, 1993;
Verhelst 6 Verstralen, 1993). Luo (1998a) proposed a general form of the
probabilistic unfolding models for dichotomous responses, of which all the previous
proposed probabilistic dichotomous unfolding models are special cases.

Though data collected in the polytomous format are ``ubiquitous'' (Dawes, 1972)
in attitude measurement, and though it is generally suggested that precision is
greater with polytomous responses than with dichotomous responses, the develop-
ment of unfolding models for polytomous responses has lagged behind the demand
that arises from real applications. In the last few years, some models for the
polytomous unfolding responses have been proposed (Andrich, 1996; Roberts 6

Laughlin, 1996; Rost 6 Luo, 1997). A basic conceptualization on polytomous
unfolding models is that the mathematical expectation of the response variable is a
single-peaked function of the person location parameter involved. However, the
underlying structure of the unfolding models for polytomous responses is yet to be
identified.

The purpose of this paper is to explore the structure of unfolding models for
polytomous responses by introducing a general form for such models. To elucidate
the motivation and development of this paper, the background of this paper is
reviewed briefly.

1.1. The Development of the General Form of the Probabilistic Unfolding Models for
Dichotomous Responses

In the context of unidimensional unfolding models, persons and statements
(items) involved in an attitude measurement are envisaged being located on a real
line termed the latent latitude continuum. Among the specific unfolding models in
the literature, the hyperbolic cosine model (HCM) (Andrich 6 Luo, 1993) is dis-
tinguished by its construction and its structure. In constructing the HCM, the
Disagree response was resolved into two latent components, Disagree below, which
reflects that the person may be located below the statement, and Disagree above,
which reflects that the person may be located above the statement. Then the Rasch
model for three ordered response categories was applied to these two components
of the Disagree response together with the single Agree response. The final form of
the HCM was obtained by summing the probabilities of the two latent components
of the Disagree response to reflect the single manifest Disagree response. Suppose
that N persons give responses to a questionnaire consisting of I statements (items).
For any person n and any item i, the response variable is denoted as
Xni : xni # [0, 1] . According to the HCM, the probability that person n gives an
Agree response to item i is

Pr[Xni=1 | ;n , $i , % i]=
exp(% i)

exp(%i)+2 cosh(;n&$i)
, (1)

where ;n is the location parameter for person n, $i is the location parameter for
item i (;n and $ i can be any real number), and %i (�0) is the unit parameter for
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FIG. 1. The probabilistic functions of the HCM including the resolved components of the Disagree
response.

item i (n=1, ..., N, i=1, ..., I ). Figure 1 shows the probabilistic functions of the
HCM.

The distinguishing structure of the HCM of Eq. (1) is that in addition to the item
location $i , a second item parameter %i appears as a unit parameter. Luo (1998a)
reparameterised the HCM into the following form, which involves only the
hyperbolic cosine function:

Pr[Xni=1 | ;n , $i , \i]=
cosh(\i)

cosh(\i)+cosh(;n&$i)
, (2)

where the parameter \i (�0) reflects the latitude of acceptance, an important con-
cept in attitude measurement (Sherif 6 Sherif, 1967). As shown in Fig. 1, ($i\\i)
are the two intersection points of the positive and negative response curves. The
relationship between %i and \i is

e%i=2 cosh(\i). (3)

It is noted that Eq. (3) is valid only when %i�ln 2. (When %i<ln 2 , the probability
for a positive response is always less than that for a negative response regardless of
the locations of the person and the item. Model (1) is considered invalid in this
case.) Based on the development of the HCM, software for analysing dichotomous
unfolding data has been made available for the real applications (Andrich 6 Luo,
1998).
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Furthermore, by making an abstraction from the reparameterised form of the
HCM (2), Luo (1998a) presented the general form of the probabilistic unfolding
models for dichotomous responses as follows,

Pr[Xni=1 | ;n , $i , \i]=
9(\i)

9(\ i)+9(;n&$i)
, (4)

where ;n , $i , and \i are as defined in (2), and the function 9 was termed the
operational function. It has the following properties:

(P1) Non-negative: 9(t)�0 for any real t;

(P2) Monotonic in the positive domain: 9(t1)>9(t2) for any t1>t2>0; and

(P3) 9 is an even function (symmetric about the origin): 9(t)=9(&t) for
any real t.

The generality of (4) was consolidated by the fact that when the operational
function was specified to be the hyperbolic cosine function, the square exponential
function, and the square function respectively, (4) led to corresponding unfolding
models previously proposed in the literature. The implied latitude of acceptance
parameters in these models were also identified in Luo (1998a). The JML procedure
for the parameter estimation of the general dichotomous unfolding model (4) is
proposed by Luo, Andrich, and Styles (1998).

1.2. The Developments of Probabilistic Cumulative Models for Polytomous
Responses

Among the probabilistic models for polytomous responses, the Rasch model for
polytomous responses is distinguished by its constructional features along with its
fundamental properties. It was constructed rigorously from the simple Rasch model
(Rasch, 1961) or one-parameter logistic model. In the simple Rasch model, a
dichotomous response Xni is governed by only one item location parameter $i and
one person location parameter ;n :

Pr[Xni=1 | ;n , $i]=
exp(;n&$i)

1+exp(;n&$i)
. (5)

The rating formulation. Andrich (1978) constructed the Rasch model for
ordered categories by introducing a series of dichotomous Rasch response variables
(Z1 , Z2 , ..., Zm) with locations [$1 , $2 , ..., $m]. A rationale in constructing and
making meaning of the model was that these locations were ordered:

$1<$2< } } } <$k< } } } <$m . (6)

When (Z1 , Z2 , ..., Zm) are independent, the entire sample space 0 includes 2m

response patterns. 0$ denotes the collection of the Guttman response patterns
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in 0. For a polytomous response variable X : x # [0, 1, 2, ..., m], the one-to-one
correspondence between the observations of X and 0$ was defined as follows:

X=0 � (0, 0, 0, ..., 0, 0),

X=1 � (1, 0, 0, ..., 0, 0),

. . . . . . . . . . . . . . . . . . . . . . . . . . (7)
X=m&1 � (1, 1, 1, ..., 1, 0),

X=m � (1, 1, 1, ..., 1, 1).

Then the probability Pr[X=k] is defined as the conditional probability of the
corresponding pattern (1, 1, ..., 1,

k

0, ..., 0
m&k

] on the constrained space 0$. When all the

dichotomous response variables [Zk , k=1, ..., m] follow the simple Rasch model
with locations [$1 , $2 , ..., $m], the induced variable X of successive categories
follows the Rasch model for polytomous responses:

Pr[X=x | ;n , ($k)]=
exp[�x

k=0 (;n&$k)]
�m

l=0 exp[� l
k=0 (;n&$k)]

, (8)

where for notational convenience, �0
k=0 (;n&$k)#0. Equation (8) was further

simplified by parameterising the mean of [$1 , $2 , ..., $m] as the location of the
polytomous variable X,

$=
1
m

:
m

k=1

$k , (9)

and the deviations [{k=$k&$, k=1, ..., m] as the (centralised) thresholds of the
polytomous response model. Then the model has the form

Pr[X=x | ;n , $, ({k)]=
exp[x(;n&$ )&�x

k=0 {k]
�m

l=0 exp[l(;n&$ )&� l
k=0 {k]

, (10)

where for notational convenience, {0#0. Figure 2 shows the probabilistic functions
of (10) and those of the corresponding dichotomous Rasch variables (Z1 , Z2 , ..., Zm)
in the case of m=3. It can be seen graphically that for k=1, ..., m, the crossing
point of the probabilistic functions for adjacent categories k&1 and k are the loca-
tions of the corresponding dichotomous variable Zk , which is $+{k .

In the derivation above, X is a response variable on a particular item. To identify
the response X with respect to item i with the maximum score of mi (i=1, ..., I),
Eq. (8) can be written as

Pr[Xni=x]=
exp[�x

k=0 (;n&$ ik)]
�mi

l=0 exp[� l
k=0 (;n&$ ik)]

, x=0, 1, ..., m i , (11)
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FIG. 2. The probabilistic functions of the Rasch model for polytomous responses.

where for notational convenience �0
k=0 (;n&$ik)#0. With the constraint that the

distance between successive thresholds is equal (and positive), Model (11) was
further reparameterised into the form in which the probabilistic function is
expressed in terms of item parameters including location $i , unit %i (Andrich, 1982):

Pr[Xni=x | ;n , $i , %i]=
exp[x(;n&$i)+x(mi&x) %i]

�mi
k=0 exp[k(;n&$i)+k(mi&k) %i]

. (12)

(In the rest of this paper, the parameters on the left-hand side of the expression as
above are often omitted and the conditional probability is simply written as
Pr[X=x] when this would not cause confusion, or in some situations, only some
of the parameters are listed for the purpose of emphasis.)

It is easy to see now that according to Eq. (11), for person n and item i with
maximum score mi , the conditional probability for any pair of adjacent response
categories takes the form of the dichotomous Rasch model. That is,

8kni=
Pr[Xni=K]

Pr[Xni=K&1]+Pr[Xni=K]
=

exp[;n&$ik]
1+exp[;n&$ik]

, k=1, ..., mi . (13)

In fact, Masters (1982) began with Eq. (13) and obtained the model of Eq. (11)
with the required constraint

:
mi

k=0

Pr[Xni=k]=1. (14)
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Though Masters (1982) derived the same model as Andrich (1978), he argued that
to make sense of the model of Eq. (11), the order of the locations [$i1 , $i2 , ..., $imi

]
was not required, which contrasts with the structural requirement (6) of Andrich's
rating formulation. (This issue will be broached again later in this paper in the
context of formalising unfolding models for polytomous responses.)

1.3. Some Established Probabilistic Unfolding Models for Polytomous Responses

In the case that the response format is 0, Strongly Disagree; 1, Disagree; 2, Agree;
and 3, Strongly Agree; Andrich (1996) and Rost and Luo (1997) resolved all the
response categories except 3, Strongly Agree into two latent components respec-
tively, one reflecting that the person may be located below the location of the state-
ment and the other reflecting that the person may be located above the location of
the statement. In the general case of m+1 ordered categories (xni=0, 1, ..., m),
there are (2mi+1) resolved categories. The Rasch model for polytomous responses
(Eq. (12)) was applied to this resolved format, and after the pairs of the latent
components were summed to reflect the corresponding manifest category, the
generalised hyperbolic cosine model (GHCM) took the form

Pr[Xni=k]=
exp[k(2m&k) % i] 2 cosh[(m&k)(;n&$i)]

#ni
, k=0, ..., m&1,

Pr[Xni=m]=
exp[m2%i]

#ni
,

(15)

where ;n , $i , and %i are as defined in (12), and #ni is the normalising factor:

#ni=exp[m2%i]+ :
m&1

k=0

exp[k(2m&k) %i] 2 cosh[(m&k)(;n&$i)]. (16)

The corresponding curves of the probabilistic functions are shown in Fig. 3.
It is evident in Fig. 3 that the probabilistic function for the most extreme positive

response (Xni=m) is single peaked and that the most extreme negative response
(Xni=0) is single troughed. The rest of the curves have two peaks. It was also
understood that as a function of person locations, the mathematical expectation of
the polytomous response variable is single peaked. However, the analytic properties
of the undulating probabilistic functions for the ordered response categories,
particularly the meaning of the intersection points of the adjacent response
categories, need to be explored further with some more general forms.

Roberts and Laughlin (1996) developed the GUM (graded unfolding model) in
a similar way except that the most positive response (Xni=m) was also considered
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FIG. 3. The probabilistic functions of the GHCM.

to be two corresponding cumulative responses folded up. Therefore, the corre-
sponding latent cumulative model has 2(m+1) categories. Derived from model
(10), the probabilistic function for the GUM takes the form

Pr[Xni=x]=
exp[x(;n&$i)&�x

k=0 {k]+exp[(2m+1&x)(;n&$i)&�x
k=0 {k]

\�m
l=0 [exp[l(;n&$i)&�l

k=0 {k]
+exp[(2m+1&l )(;n&$i)&�l

k=0 {k]]+
,

x=0, ..., m. (17)

1.4. Approach and Structure of This Paper

This paper presents a formulation for a class of polytomous unfolding models
with an attempt to uncover the hitherto implicit structure of unfolding models for
ordered polytomous responses. The approach used in this paper does not follow
Andrich (1996), Rost and Luo (1997), and Roberts and Laughlin (1996). Instead,
by means of the rating formulation in a broader setting, a polytomous response
which follows an unfolding process is also considered to be an observation of a
random response vector, of which the components are dichotomous and all possible
observations are in the collection of Guttman response patterns. Together with
some particular attention to the special features of dichotomous unfolding models
which distinguish them from the dichotomous cumulative models, a class of
polytomous unfolding models is constructed. This class of polytomous unfolding
models is sufficiently general that the models proposed by Andrich (1996), Rost and
Luo (1997), and Roberts and Laughlin (1996) are special cases. Furthermore, some
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new models can be readily specified according to the general form of this class of
the unfolding models for polytomous responses.

To obtain an insight into constructing models for ordered polytomous responses,
the next section abstracts the approaches used in developing the Rasch models for
polytomous responses into a broader setting. Under the context of a general
response process, the mathematical equivalence between the rating formulation and
Master's approach is formalised. Therefore, these approaches are also appropriate
in the specified context of the unfolding response process. It is then shown that to
construct a polytomous unfolding model in terms of dichotomous unfolding
variables, it is operational to set the series of unfolding dichotomous variables with
the same location while the values of their latitude of acceptance parameters vary.
With this setting, a one-to-one correspondence is mapped between the manifest
polytomous responses and the collection of Guttman patterns so that the
probabilistic functions of the manifest polytomous responses are expressed in terms
of the dichotomous unfolding response functions. It is then clarified that the models
formulated are within the frame of unfolding models. Furthermore, Theorem 2 of
Section 3 shows that the model has a desirable property when the latent
dichotomous variables are in the order of the values for their latitude of acceptance
parameters. It is also demonstrated that the unfolding models proposed in the
literature can be considered special cases of the models formulated in this paper.

2. THE RATING FORMULATION IN GENERAL SITUATIONS

In Andrich's rating formulation, the key procedure to present the polytomous
cumulative model is to set up a mapping between the ordered polytomous responses
and a random vector of which the components are dichotomous and the co-domain
0$ is the collection of the Guttman patterns. This section shows that this procedure
can be extended into a more general context. Then, in particular, the principle of
the rating formulation can be applied to construct unfolding models.

2.1. General Process

In a general context, a polytomous response variable X with possible value
[0, 1, ..., m] can be mapped into an observation of a random dichotomous vector
Z=(Z1 , Z2 , ..., Zm) as

(Z=(1, 1, ..., 1
k

, 0, 0, ..., 0
m&k

))=(X=k), k=0, 1, ..., m. (18)

The collection of possible mapping observations of X to Z is 0$=[Vk=(1, 1, ..., 1
k

,

0, 0, ..., 0
m&k

), k=0, ..., m]. It is evident the components of Z are not independent on

0$. In particular,

Pr[Zk=1 | Zk+1=1]=Pr[Zk+1=0 | Zk=0]=1, for any k=1, ..., m&1.

(19)
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Let 2=[0, 1]. Then all the possible outcomes of Z=(Z1 , Z2 , ..., Zm) are
0=2_2_ } } } _2

m

. It is evident that 0$/0. Let the marginal probabilities of Zk

on 0 be

pk#Pr[Zk=1],
(20)

qk#1&pk=Pr[Zk=0], k=1, ..., m.

Then according to the definition of the conditional probability on 0$/0,

Pr[Z=(1, 1, ..., 1
k

, 0, 0, ..., 0
m&k

) | 0]

Pr[Z=(1, 1, ..., 1
k

, 0, 0, ..., 0
m&k

) | 0$]=
Pr[0$ | 0]

=
(>k

l=1 pl)(>m
l=k+1 ql)

�m
j=0 (> j

l=1 pl)(>m
l= j+1 ql)

=
(>k

l=1 pl)(>m
l=k+1 ql)

#
, (21)

where

#= :
m

j=0
\`

j

l=1

p l+\ `
m

l= j+1

ql+ . (22)

(When j=0, > j
l=1 p l is defined as 1; when j=m, >m

l= j+1 ql is also defined as 1.)
According to (18), the probabilistic function of X takes the form

Pr[X=k]=Pr[Z=(1, 1, ..., 1
k

, 0, 0, ..., 0
m&k

) | 0$]

=
(>k

l=1 pl)(>m
l=k+1 ql)

#
, k=0, ..., m. (23)

Conversely, [ pk , k=1, ..., m] can be expressed in terms of [Pr[X=k],
k=0, 1, ..., m], as shown in the following.

Lemma 1. An equivalent expression of (23) is

pk=
Pr[X=k]

Pr[X=k&1]+Pr[X=k]
, k=1, ..., m;

(24)

:
m

k=0

Pr[X=k]=1.
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Proof. From (23), for any k, 0<k�m, direct substitution leads to

Pr[X=k]
Pr[X=k&1]+Pr[X=k]

=
(>k

l=1 pl)(>m
l=k+1 ql)

(>k&1
l=1 pl)(> m

l=k ql)+(>k
l=1 pl)(>m

l=k+1 q l)

=
pk

qk+pk
=pk . (25)

Together with (22) by which the denominator # is defined, (25) leads to (24).
Conversely, from (24), for any k, 0<k�m,

`
k

l=1

pl `
m

l=k+1

q l=\`
k

l=1

Pr[X=l ]
Pr[X=l&1]+Pr[X=l ]+

_\ `
m

l=k+1

Pr[X=l&1]
Pr[X=l&1]+Pr[X=l ]+

=
(>k

l=1 Pr[X=l ])(>m
l=k+1 Pr[X=l&1])

~m
l=1 [Pr[X=l&1]+Pr[X=l ]]

=Pr[X=k] }
>m&1

l=1 Pr[X=l ]
~m

l=1 [Pr[X=l&1]+Pr[X=l ]]
. (26)

Define # according to

##
>m&1

l=1 Pr[X=l ]
~m

l=1 [Pr[X=l&1]+Pr[X=l ]]
=

>m
l=1 pl

Pr[X=m]
. (27)

It is evident that # is not related with k. Therefore, (24) leads to (23). K

It is noted that though (23) and (24) are equivalent, the explicit focus of each is
different. Equation (23) focuses on the overall structure of the latent dichotomous
responses while (24) focuses on the pairs of adjacent response categories. In the
context of Rasch models, Andrich (1978) derived model (8) in the form of (23).
Masters (1982) began with (24) and obtained model (13). In Andrich's approach,
the requirement on the ordering of the dichotomous variables is essential. Andrich
(1985) provided further elaboration on the importance of this requirement. The
author of this paper considers that when a polytomous response is mapped into a
set of dichotomous responses, the relationship between these dichotomous respon-
ses cannot be arbitrary. Though the ordering requirement is not the mathematical
property of the probabilistic function of model (11), it is the requirement on the
structure of the model.

2.2. Unfolding Process

In particular, according to Lemma 1, an unfolding model for polytomous responses,
which is the main interest of this paper, should lead to a dichotomous model when
the person is asked to give his or her preference on the pairs of the adjacent
categories. In this case, the closer the person's location to the item's, the more likely
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the higher or more positive response category should be chosen. When the respon-
ses are coded as 1, the higher response category is chosen, and 0, the lower
response category is chosen, then this dichotomous response process should be
single peaked around the location of the polytomous item being considered. It
implies that the preferences of the adjacent categories are anchored at the location
$ of the item invoking a polytomous response. That is, the dichotomised items
arising from adjacent category preference have the same locations as the manifest
item. In addition, these dichotomous responses should follow some pattern. For
instance, when the response categories are 0, Strongly Disagree, 1, Strongly
Disagree, 2, Agree, and 3, Strongly Agree, if a person chose Strongly Agree out of
the adjacent categories Strongly Agree and Agree, then the person is expected with
certainty to choose Agree out of the adjacent categories Agree and Disagree. In
general, the joint sample space of these dichotomous items is 0$ , the collection of
the Guttman patterns, as defined in the previous section.

It is noted in the general form (4) of unfolding models for dichotomous responses
that for an item which follows the dichotomous unfolding process, its location
parameter $i together with its latitude of acceptance parameter \i govern the
response process. The parameter \i is a threshold: when the person�item distance
is smaller than |;n&$i |<\i , a positive response is more likely; otherwise, when
|;n&$i |>\i , a negative response is more likely. This biparameterisation of the
dichotomous unfolding models makes it possible that a set of dichotomous
unfolding variables have the same location but different latitudes of acceptance.

Figure 4 shows that for each dichotomous unfolding variable Zk , its location $k

and latitude of acceptance \k define an interval [$k&\k , $k+\k] in which a
positive response is more likely. Outside this interval, a negative response is more

FIG. 4. The probabilistic functions of the general unfolding model for dichotomous responses.
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likely. Figure 4 also shows that for the response variables which have the same
value for their locations, the greater the value of \k , the greater the range of
persons on the continuum who find the higher order response acceptable.

It will be seen in the next section that the requirement that the dichotomous
variables have the same location provides a base on which a general form of
unfolding models for polytomous responses is constructed.

3. CONSTRUCTING THE CLASS OF POLYTOMOUS UNFOLDING MODELS

3.1. Presentation of the Probabilistic Functions

Again, consider that a person n with location ;n is invited to give a response to
a statement (item) i with the following common response alternatives:

Strongly disagree Disagree Agree Strongly agree

0 1 2 3

The rating formulation approach generally maps a manifest polytomous response
Xni # [0, 1, 2, 3] to three dichotomous variables (Zni1 , Zni2 , Zni3). In the context of
the unfolding process as discussed in the previous section, it is central to suppose
that the dichotomous variables for the same polytomous variable follow the general
form of the unfolding models with a different latitude of acceptance parameters
[\ik] and the same location parameter $i . Under this setting, for k=1, 2, 3,

pnik(\ik , ;n , $ i)#Pr[Znik=1 | \ik , ;n , $i]=
9k(\ik)

9k(\ik)+9k(;n&$i)
,

(28)

qnik(\ik , ;n , $ i)#Pr[Znik=0 | \ik , ;n , $ i]=
9k(;n&$i)

9k(\ik)+9k(;n&$i)
.

Therefore, according to (23), the probability for the values of X can be expressed
as the conditional probability of the corresponding pattern in 0$:

Pr[Xni=0]=
1

#ni
qni1qni2 qni3=

91(;n&$i) 92(;n&$i) 93(;n&$i)
#ni >3

k=1 [9k(\ ik)+9k(;n&$i)]
,

Pr[Xni=1]=
1

#ni
(pni1qni2 qni3)=

91(\i1) 92(;n&$i) 93(;n&$ i)
#ni >3

k=1 [9k(\ ik)+9k(;n&$ i)]
,

(29)

Pr[Xni=2]=
1

#ni
(pni1 pni2 qni3)=

91(\ i1) 92(\i2) 93(;n&$i)
#ni >3

k=1 [9k(\ik)+9k(;n&$ i)]
,

Pr[Xni=3]=
1

#ni
(pni1 pni2 pni3)=

91(\ i1) 92(\i2) 93(\ i3)
#ni >3

k=1 [9k(\ik)+9k(;n&$ i)]
,
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were

#ni=
1

>3
k=1 [9k(\ik)+9k(;n&$i)]

[91(;n&$i) 92(;n&$i) 93(;n&$i)

+91(\i1) 92(;n&$i) 93(;n&$i)

+91(\i1) 92(\i2) 93(;n&$i)

+91(\i1) 92(\i2) 93(\3)]. (30)

In general, Eq. (29) holds when the maximum score of Xni is a positive integer m
and the alternatives of a response are [0, 1, 2, ..., m]. Then in terms of the
probabilistic functions of the dichotomous variables of Eq. (4), the expression for
the probabilistic functions of the manifest variable is

Pr[Xni=k]=
\`

k

l=1

pnil+\ `
m

l=k+1

qnil+
#ni

=
\`

k

l=1

9l (\il)
9l (\ il)+9(;n&$i)+\ `

m

l=k+1

9l (;n&$i

9l (\il)+9 l (;n&$i)+
#ni

=
\`

k

l=1

9 l (\il)+\ `
m

l=k+1

9 l (;n&$i)+
#ni `

m

l=1

[9l (\il)+9l (;n&$i)]
, k=0, ..., m, (31)

where #ni is a normalising factor

#ni= :
m

k=0
\`

k

l=1

9 l (\ il)
9l (\il)+9l (;n&$i)+\ `

m

l=k+1

9l (;n&$i)
9 l (\il)+9l (;n&$ i)+ . (32)

Letting

*ni##ni `
m

l=1

[9l (\ il)+9 l (;n&$i)]= :
m

k=0
\`

k

l=1

9l (\il)+\ `
m

l=k+1

9l (;n&$i)+ ,

(33)

we obtain a formulation of polytomous unfolding models as the following

Pr[Xni=k | ;n , $i , (\il)]=
(>k

l=1 9l (\il))(>m
l=k+1 9l (;n&$i))

*ni
, k=0, ..., m.

(34)
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3.2. Confirmation of the Unfolding Process

Theorem 1. The expectation of the class of models (34) is a single peaked
function of the person location parameter. That is, for any m, when |;$n&$i |�
|;n&$i | ,

E(Xni | ;n)=
�m

k=0 k(>k
l=1 9 l (\il))(>m

l=k+1 9l (;n&$i))
�m

k=0 (>k
l=1 9 l (\il))(>m

l=k+1 9l (;n&$i))

�
�m

k=0 k(>k
l=1 9 l (\il))(>m

l=k+1 9 l (;$n&$i))
�m

k=0 (>k
l=1 9l (\il))(>m

l=k+1 9 l (;$n&$i))
=E(Xni | ;$n). (35)

Proof. The theorem is proved by induction. First for any m and any 1� j�m,
define

Ej (Xni)=
� j

k=0 k(>k
l=1 9 l (\il))(> j

l=k+1 9l (;n&$ i))
*nij

, (36)

where

*nij= :
j

k=0
\`

k

l=1

9l (\ il)+\ `
j

l=k+1

9l (;n&$ i)+ . (37)

Because all operational functions are nonnegative,

Ej (Xni)=
� j

k=0 k(`k
l=1 9l (\il))(> j

l=k+1 9l (;n&$i))
*nij

�
j � j

k=0 (>k
l=1 9 l (\ il))(> j

l=k+1 9 l (;n&$i))
*nij

= j. (38)

The first step of induction requires one to examine the validity when j=1. In fact,

E1(Xni)=
91(\i1)

91(\i1)+91(;n&$ i)
. (39)

That is, E1(Xni) is the expectation of the dichotomous unfolding variable Zni1 ,
which is a single-peaked function of person location ;n . Then the assumption of the
induction is that, for j<m, Ej (Xni) is a single-peaked function of person location
;n . That is, when |;$n&$i |�|;n&$i | ,

Ej (Xni)�E j$(Xni) (40)
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where E j$(Xni) is defined as in (36) when ;n is replaced with ;$n . The following
equation expresses Ej+1(Xni) in terms of Ej (Xni):

Ej+1(Xni)=
� j+1

k=0 k(>k
l=1 9l (\ il))(> j+1

l=k+1 9 l (;n&$i))
� j+1

k=0 (>k
l=1 9 l (\il))(> j+1

l=k+1 9 l (;n&$i))

=
\( j+1)(> j+1

l=1 9l (\il))+9 j+1(;n&$i) � j
k=0 k

(>k
l=1 9 l (\il))(> j

l=k+1 9l (;n&$i)) +
\> j+1

l=1 9l (\il)+9 j+1(;n&$i) � j
k=0

(>k
l=1 9l (\ il))(> j

l=k+1 9l (;n&$i))+
=

( j+1) > j+1
l=1 9 l (\il)+9j+1(;n&$i) Ej (Xni) *nij

> j+1
l=1 9l (\il)+9 j+1(;n&$i) *nij

. (41)

According to (38),

j+1�Ej (Xni)>0. (42)

Because [9l] are nonnegative functions and

9j+1(;n&$ i) *nij�0, (43)

we have

1�:j#
> j

l=1 9 l (\il)
> j

l=1 9l (\il)+9j+1(;n&$i) *nij
�0. (44)

Therefore, Ej+1(Xni) can be expressed as a weighted sum of ( j+1) and Ej (Xni):

Ej+1(Xni)=( j+1) :+Ej (Xni)(1&:). (45)

Furthermore, because when |;n&$i |< |;$n&$i |, 9 l (;n&$ i)<9l (;$n&$i), l=1, 2,
..., m, then

*nij= :
j

k=0
\`

k

l=1

9 l (\ il)+\ `
j

l=k+1

9 l (;n&$ i)+
� :

j

k=0
\`

k

l=1

9 l (\ il)+\ `
j

l=k+1

9l (;$n&$i)+#*$nij , (46)

and

1�:j=
>k

l=1 9 l (\il)
>k

l=1 9 l (\il)+9m(;n&$i) *ni(m&1)

�
>k

l=1 9 l (\il)
>k

l=1 9 l (\il)+9m(;$n&$i) *$ni(m&1)

#: j$�0. (47)
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According to the assumption of the induction (40), we have

Ej (Xni)�Ej$ (Xni). (48)

Then (42), (47), and (48) lead to

Ej+1(Xni)=( j+1) :j+Ej (Xni)(1&:j)

=:j [( j+1)&Ej (Xni)]+Ej (Xni)

�:j$[( j+1)&Ej (Xni)]+Ej (Xni)

=( j+1) :j$+E j (Xni)(1&:j$)

�( j+1) :j$+E j$(Xni)(1&: j$)

=E $j+1(Xni). (49)

Then (40) holds for any j=1, 2, ..., m. In particular, when j=m&1, (35) holds. K

3.3. Analytic Properties of the Probabilistic Functions

For each latent dichotomous variable Zk , if and only if |;n&$i |=\k ,

pnik=Pr[Zk=1]=Pr[Zk=0]=qnik= 1
2 . (50)

Then according to Lemma 1, when (50) holds,

Pr[X=k&1]=Pr[X=k]. (51)

Conversely, according to Lemma 1, Eq. (51) also implies (50) or equivalently,
|;n&$i |=\k .

The equivalence of Eqs. (50) and (51) is significant in interpreting the graphic
behaviour of the probabilistic functions. It reveals that the crossing points of the
probabilistic functions of the adjacent categories are the values of the latitudes of
acceptance parameters of the corresponding latent dichotomous variables. To show
this point, Fig. 5 plots the probabilistic functions of the model (70) together with
the probabilistic functions of the corresponding dichotomous variables (m=3).

Furthermore, Fig. 5 shows that if the thresholds are ordered in their values, then
for any k>0, in the intervals [$i+\k+1 , $ i+\k] and [$ i&\k , $i&\k+1], the
probability Pr[X=k] has the greatest value among call categories. That is, within
these intervals, [X=k] is the most likely. The following theorem confirms that the
model (34) has the desirable property when the latent dichotomous variables are in
the order of the values of their latitude of acceptance parameters.

Theorem 2. Suppose that \1>\2> } } } >\k> } } } >\m . For m>k0>0 and any
;n , if \k0

>|;n&$i |>\k0+1 , then for any k,

P[X=k0 | ;n]�P[X=k | ;n]. (52)
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FIG. 5. The probabilistic functions of the unfolding model GUM for polytomous responses.

Proof. According to (34),

Pr[X=k0 | ;n]=
(>k0

l=1 pl)(>m
l=k0+1 ql)

*
, (53)

Pr[X=k | ;n]=
(>k

l=1 pl)(>m
l=k+1 ql)

*
. (54)

Consider their ratio

R=
Pr[X=k0 | ;n]

Pr[X=k | ;n]
=

(>k0
l=1 pl)(>m

l=k0+1 ql)

(>k
l=1 pl)(>m

l=k+1 ql)
. (55)

The following is to prove that R>1, which leads to (52). When k>k0 ,

R=
>k

l=k0+1 ql

>k
l=k0+1

= `
k

l=k0+1

ql

pl
. (56)

Because |;n&$i |>\k0+1 and for any l>k0 , |;n&$i |>\k0+1�\l ,

ql=Pr[Zl=0]> 1
2>Pr[Zl=1]=pl .

Therefore, R>1. When k<k0 ,

R=
>k0

l=k+1 pl

>k0
l=k+1 ql

= `
k0

l=k+1

pl

ql
. (57)
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Because |;n&$ i |<\k0
and for any l<k0 , |;n&$i |<\k0

�\ l ,

ql=Pr[Zl=0]< 1
2<Pr[Z l=1]=pl ,

which leads to R>1.

3.4. A Special Case: The GUM

The GUM (Roberts 6 Laughlin, 1996) is a model for polytomous unfolding
responses, developed by folding the Rasch model for polytomous responses. If the
unfolding responses have the maximum score of m, then the probabilistic function
of the GUM can be derived as (17), which was expressed in the beginning of this
paper. This section will demonstrate that if the corresponding Rasch model for
polytomous responses for Eq. (17) has ordered thresholds

{1<{2< } } } <{2m<{2m+1 , (58)

then (17) is a special case of the general unfolding model of (34).
First, it is noted that the symmetric requirement on (17) in Roberts and Laughlin

(1996) is

{k={2m+2&k , k=1, ..., m. (59)

Under the condition of (58), (59) leads to {k�0 or, equivalently,

exp(&{k)�1. (60)

For k =1, 2,..., m, according to (17), After some simplification, we have

Pr[Xni=k]
Pr[Xni=k&1]+Pr[Xni=k]

=
[exp[k+]+exp[(2m+1&k) +]]

\exp[{k][exp[(k&1) +]+exp[[2m+1&(k&1)] +]]
+[exp[k+]+exp[(2m+1&k) +]] +

=
cosh _\k&

2m+1
2 + +&

exp[{k] {cosh _{(k&1)&
2m+1

2 = +&=+cosh _\k&
2m+1

2 + +&
=

exp[&{k]
, (61)

cosh _\2m+1
2

+1&k+ +&
cosh _\2m+1

2
&k+ +&

+exp[&{k]
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where

+=(;n&$i). (62)

Let

9k(t)=
cosh _\2m+1

2
+1&k+ t&

cosh _\2m+1
2

&k+ t&
. (63)

Then it is straightforward to show that 9k(t) satisfies the properties of (P1), (P2),
and (P3). Select \ik(�0) so that

cosh _\2m+1
2

+1&k+ \ik&
cosh _\2m+1

2
&k+ \ik&

=exp[&{k]. (64)

Then \ik(�0) is well defined according to (60). Equation (61) is a probabilistic
function of an unfolding model:

Pr[Xni=k]
Pr[Xni=k&1]+Pr[Xni=k]

=
9k(\ik)

9k(\ik)+9k(;n&$i)
=Pr[znik=1 | ;n , $i , \ik].

(65)

FIG. 6. The probabilistic functions of the unfolding model GUM for polytomous responses.
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According to Lemma 1 in the previous section, the GUM can be reexpressed in the
form of Eq. (34). Figure 6 shows the probabilistic functions of the GUM and the
corresponding dichotomous unfolding variables.

A similar procedure can also show that the GHCM (Andrich, 1996 Rost 6 Luo,
1997) conforms to the general form (34) of the unfolding models for polytomous
responses.

4. GENERATING NEW POLYTOMOUS UNFOLDING MODELS

From the general form (34) of the class of the unfolding models for polytomous
responses, it is possible to specify various unfolding models based on different
unfolding models for dichotomous responses. To simplify the expressions, however,
the following examples take the same operational functions for all the dichotomous
latent unfolding variables. The dichotomous unfolding models used in this section
are the extended forms of the respective original models for dichotomous responses
generalised in Luo (1998a).

4.1. The Simple Square Logistic Model (SSLM ) for Polytomous Responses:
SSLMP

Let (Andrich, 1988)

Pr[Znik=1]=
exp(\2

ik)
exp(\2

ik)+exp[(;n&$i)
2]

, k=1, ..., m. (66)

Then according to (34),

Pr[Xni=k]=
exp[�k

l=1 \2
il] exp[(m&k)(;n&$i)

2]
*ni

,

k=0, 1, ..., m&1, (67)

where

*ni= :
m

k=0

exp { :
k

l=1

\2
il= exp[(m&k)(;n&$i)

2]. (68)

Figure 7 shows the curves of the probabilistic functions of the SSLMP.

4.2. HCM for Polytomous Responses: HCMP

Let (Andrich 6 Luo, 1993; Luo 1998a)

Pr[Znik=1]=
cosh(\ik)

cosh(\ik)+cosh(;n&$i)
, k=1, ..., m. (69)
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FIG. 7. The probabilistic functions of the unfolding model SSLMP for polytomous responses.

Then according to (34),

Pr[Xni=k]=
[cosh(;n&$ )]m&k >k

l=1 cosh(\il)
*ni

,

k=0, 1, ..., m&1, (70)

where

*ni= :
m

k=0

[cosh(;n&$ )]m&k `
k

l=1

cosh(\il). (71)

The curves of the probabilistic functions of the HCMP were shown in Fig. 5.

4.3. The PARELLA Model for Polytomous Responses: PARELLAP

Let (Hoijtink, 1990)

Pr[Znik=1]=
\2

ik

\2
ik+(\n&$i)

2 , k=1, ..., m. (72)

Then according to (34),

Pr[Xni=k]=
(;n&$ )2(m&k) >k

l \2
ik

*ni
, k=0, 1, ..., m&1, (73)
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FIG. 8. The probabilistic functions of the unfolding model PARELLAP for polytomous responses.

where

*ni= :
m

k=0

(;n&$ )2(m&k) `
k

l=1

\2
ik . (74)

(For notational convenience, (;n&$ )2(m&k)=1 when k=m regardless of the value
of (;n&$ ).) Figure 8 shows the curves of the probabilistic functions of the
PARELLAP.

5. SUMMARY AND DISCUSSION

In the class of unfolding models proposed in this paper, the thresholds, which are
the points of intersection of probabilistic functions for the adjacent response
categories, are interpreted as the latitudes of acceptance parameters of the latent
dichotomous unfolding variables which have the same location and jointly define
the manifest polytomous response variable. Though the formulation of the general
form of this class of unfolding models does not mathematically rely on the require-
ment that the latent dichotomous variables are in the order of their latitudes of
acceptance, this requirement ensures that this class of models is well structured and
conforms to the psychological mechanism by which the polytomous responses are
made. The presentation of this class of unfolding models is focused on unidimen-
sional situations. However, the result of this paper can be extended to the
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multidimensional situations, as in the dichotomous models (Luo, 1998b), provided
the person�item distance in the general form of this class of unfolding models is
considered as in a multidimensional space. The operationalization of this class of
unfolding models, including parameter estimation and test of fit, is expected to
facilitate the applications of a range of specific unfolding models in real psychological
measurement (Luo, 1999).
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